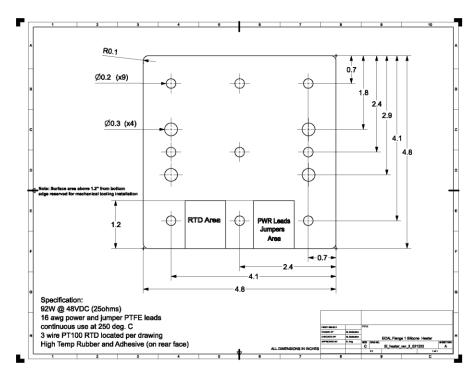


Detector Support Group <u>We choose to do these things "not because they are easy, but because they are hard".</u> Weekly Report, 2023-02-15


<u>Hall A – ECAL</u>

<u>Marc McMullen</u>

- Completed test of ECAL heater inside an insulated enclosure (mineral wool and Teflon) at 92 W
 - ★ The heater temperature was controlled to 250 °C, $\leq 0.5\%$

• Completed version 2 drawing of the heater

<u>Hall A – Møller</u>

Mary Ann Antonioli and Brian Eng

- Reviewed RTD drawings with Kaiyi and Probir
 - * Switched to regular multi-conductor cable from the previously chosen twisted pair
- Discussed possible isolation amplifiers with vendors, via emails and meetings
 - ★ Prefer to have single unit of at least 250 V, preferably 300 V, that can handle all voltage taps, since 224 V needed for entire torus magnet 4, coils A G
- Began Phoebus screen for magnet 2 temperatures

<u>Hall A – SoLID</u>

Mary Ann Antonioli and Pablo Campero

- Made Visio flowchart of alarm and email notification system
- Modified *Solenoid CCR Expert* HMI screen

<u>Hall B – Magnets</u>

<u>Brian Eng</u>

- Fast dump of both magnets: <u>https://logbooks.jlab.org/entry/4127751</u>
- Appears to be issue with Torus PLC
 - ★ Generated support ticket with Rockwell Automation: 4010006007
 - ★ Needed to provide much information to get support—models and firmware for all modules, software versions, current project file, etc.

Hall B – SVT

<u>Brian Eng</u>

- Troubleshooting lost communication from interlock cRIO
 - * https://logbooks.jlab.org/entry/4130269
 - ★ Swapped out the cRIO controller/supply: <u>https://logbooks.jlab.org/entry/4130487</u>
 - ★ Generated support request with National Instruments: 02052980 (RMA may be generated for bad hardware)

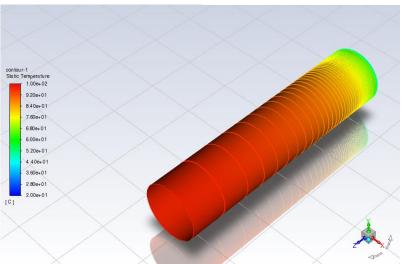
<u>Hall C – NPS</u>

<u>Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng,</u> <u>Mindy Leffel, and Marc McMullen</u>

- Adding relay module to cRIO to control remote power controllers for chillers
 - ★ Relay module not accessible from project despite being visible in NI-Max and from computers with higher versions of LabVIEW (development computer uses LabVIEW 2020)
 - ★ Downloading LabVIEW 2022 to development computer for possible resolution
- Debugging Python script for high voltage settings
 - * Some channels return a warning of write request failure and some channels will not accept a new set value
 - ★ Implemented a wait time of 0.25 s after each set command, but still unresolved
 - Checking Pyepics (Python package for EPICS) documentation for a method of accessing PVs that may be more reliable

- Attempted to correct problem of overlapping components in Ansys crystal array model by using Ansys SpaceClaim interference tool
 - * Corrected overlapping components and generated mesh, but was unable to import corrected model to Fluent
 - ★ Debugging in progress
- Connected AC relay switch to the cRIO power distribution and tested circuit
- Terminated two 50-conductor, D-sub cables; nine of 12 completed
- Tested all Phoebus V4.6.10 applications after system rebuild

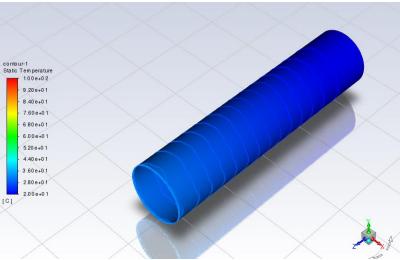
<u>Hall D – JEF</u>

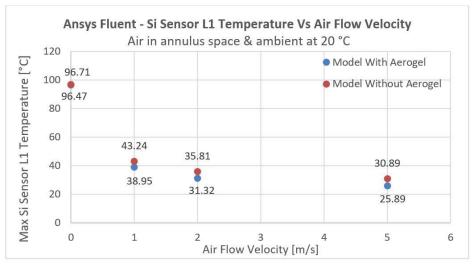

George Jacobs and Mindy Leffel

- Disassembled, cleaned, and inspected three crystals (42 total)
- Wrapped 18 crystals with foil only (no Tedlar)

EIC

Brian Eng and Pablo Campero


- Met with LBL Mechanical Designers about possibility of contributing to silicon design
- Modified beampipe 3D model, imported model to *Ansys Fluent*, and configured for thermal analysis
- Ran simulations with different aerogel properties to see effect on silicon sensor layer 1 temperature
 - ★ Changed density from 50 to 250 Kg/m³
 - ***** Used two values for thermal conductivity (cp = 0.0156 and 0.0140)
 - ★ Only change in thermal conductivity affects silicon sensor layer 1, by 1°C
- Ran five simulations to check maximum temperature of silicon layer 1, varying air flow velocity in the annulus space and enclosure from 0 to 5 m/s and temperature constant at 20°C


Model with aerogel and 5 mm separation between the beryllium pipe and silicon sensor layer 1; air flow velocity of 0.001 m/s

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2023-02-15

Model with aerogel and 5 mm separation between the beryllium pipe and silicon sensor layer 1; air flow velocity of 2 m/s

Temperature vs velocity for 5 mm separation model, with and without aerogel

EIC-DIRC

Tyler Lemon

- Investigating side walls for optical table in laser lab
 - ★ Pre-made vs. custom panels
 - ★ How to lock walls into vertical position
- Tested Altium's simulation capabilities with laser interlock circuit; best for noninteractive simulations of circuits with generic components used at the beginning of design process
 - * Replaced schematic components with generic simulation models
 - ★ Performed DC operating point simulation; runs system at 5 VDC and probes monitor output